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Abstract

In this paper we consider the Cayley graph Gf associated to a
Boolean function f and we use it to investigate some of the cryp-
tographic properties of f . We derive necessary (but not sufficient)
conditions for a Boolean function to be bent. We also find a com-
plete characterization of the propagation characteristics of f using the
topology of its associated Cayley graph Gf . Finally, some inequali-
ties between the cardinality of the spectrum of Gf and the Hamming
weight of f are obtained, and some problems are raised.

1 Introduction and Motivation

In this paper we will concentrate on a new technique for dealing with Boolean
functions. The technique has already been used successfully to find a char-
acterization of Boolean bent functions in terms of spectrum of the Cayley
graph Gf associated to f . Here, we will completely describe the propagation
characteristics of the Boolean function f using the spectrum of the associ-
ated Cayley graph, we find some necessary conditions for a function to be
bent, and show some inequalities (albeit, far from being tight) connecting
the Hamming weight of f , the dimension of the vector space where f is
defined, and the cardinality of the spectrum of Gf .

Let Vn be the vector space of dimension n over the two element field
F2 (= V1). Let us denote the addition operator over F2 by ⊕, and the direct
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product by “·”. A Boolean function f on n variables is a mapping from Vn

into V1, that is, a multivariate polynomial over F2,

f(x1, . . . , xn) = a0⊕
n∑

i=1

aixi⊕
∑

1≤i<j≤n

aijxixj ⊕ . . .⊕a12...nx1x2 . . . xn, (1)

where the coefficients a0, ai, aij , . . . , a12...n ∈ F2. This representation of f is
called the algebraic normal form (ANF) of f . The number of variables in the
highest order product term with nonzero coefficient is called the algebraic
degree, or simply the degree of f . We make the convention that for all
matrices and vectors the indexing starts from 0.

For a Boolean function on Vn, let Ωf = {x ∈ Vn | f(x) = 1}. We denote
by 〈Ωf 〉 the space of the 0, 1 sequences generated by Ωf , and by dim〈Ωf 〉
its dimension. The cardinality of Ωf is wt(f), called the Hamming weight
of f . The Hamming distance between two functions f, g : Vn → V1 is
d(f, g) = wt(f ⊕ g). A Boolean function f(x) is called an affine function if
its algebraic degree is 1. If, in addition, a0 = 0 in (1), then f(x) is a linear
function. The nonlinearity of a function f , denoted by Nf , is defined as

min
φ∈An

d(f, φ),

where An is the class of all affine functions on Vn. We say that f satisfies
the propagation criterion (PC) with respect to c if∑

x∈Vn

f(x)⊕ f(x⊕ c) = 2n−1. (2)

If f satisfies the PC with respect to all vectors of weight 1, f is called an
SAC (Strict Avalanche Criterion) function. If the above relation holds for
any c with wt(c) ≤ s, we say that f satisfies PC(s), and if s = n, then
we say that f is a bent function. Recall that the Hamming weight of bent
functions is 2n−1± 2n/2−1 (n even), and they attain maximum nonlinearity,
namely 2n−1 − 2n/2−1 (cf. [14]). The correlation value between g and h

(both are defined on Vn) is

c(g, h) = 1− d(g, h)
2n−1

.

We define the Walsh transform of a function f on Vn to be the map
W (f) : Vn → R, W (f)(w) =

∑
x∈Vn

f(x)(−1)w·x, which defines the coef-
ficients of f with respect to the orthonormal basis of the group characters
Qw(x) = (−1)w·x. In turn, f(x) = 2−n

∑
w W (f)(w)(−1)w·x.
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A graph is regular of degree r (or r-regular) if every vertex has degree r

(number of edges incident to it). We say that an r-regular graph G with pa-
rameters (v, r, d, e) is a strongly regular graph (srg) if there exist nonnegative
integers e, d such that for all vertices u,v the number of vertices adjacent
to both u,v is e, d, if u,v are adjacent, respectively, nonadjacent.

An easy counting argument shows that r(r − d− 1) = e(v − r − 1). The
complementary graph Ḡ of the strongly regular graph G is also strongly
regular with parameters (v, v − r − 1, v − 2r + e− 2, v − 2r + d).

Let f be a Boolean function on Vn. We define the Cayley graph of f to
be the graph Gf = (Vn, Ef ) whose vertex set is Vn and the set of edges is
defined by

Ef = {(w,u) ∈ Vn | f(w ⊕ u) = 1}.

The adjacency matrix Af is the matrix whose entries are Ai,j = f(b(i) ⊕
b(j)), where b(·) is the binary representation of the argument. It is simple
to prove that Af has the dyadic property: Ai,j = Ai+2k−1,j+2k−1 . Also, from
its definition we derive that Gf is a regular graph of degree wt(f) = |Ωf |
(see [12, Chapter 3] for further definitions).

Given a graph f and its adjacency matrix A, the spectrum Spec(Gf ) is
the set of eigenvalues of A (called also the eigenvalues of Gf ). All of our
theorems will assume that Gf is connected. One can show easily that all
connected components of Gf are isomorphic (we shall point out from time
to time what changes in our arguments in case Gf is not connected).

We observe that a strongly regular graph is essentially the same as an
association scheme of class 2 (see [11, 18] and the references therein). In
spite of their (apparently) strict arithmetics nature, strongly regular graphs
are difficult to investigate. P.J. Cameron [7] mentions that “Strongly regular
graphs lie on the cusp between highly structured and unstructured. For exam-
ple, there is a unique strongly regular graph with parameters (36; 10; 4; 2), but
there are 32548 non-isomorphic graphs with parameters (36; 15; 6; 6). (The
first assertion is a special case of a theorem of Shrikhande (our note [23]),
while the second is the result of a computer search by McKay and Spence
(our note [19]).) In the light of this, it will be difficult to develop a theory
of random strongly regular graphs!”.

The complete determination for the class of bent function is still an open
problem. This type of function is relevant to cryptography, cf. [21] (although
balancedness is often required, and bent functions are not balanced, if n >
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20, the difference 2n/2−1 between bent functions’ weights and the weight
2n−1 of balanced functions is negligible and cannot be used in attacks [10]);
algebraic coding theory (Kerdock codes are constructed from quadratic bent
functions [20]); sequences [22]; design theory (any difference set will render
a symmetric design, cf. [2, pp. 274–278]).

As bent Boolean functions are as elusive as the strongly regular graphs,
perhaps it is then not surprising that there should be some connections
between graph theory and Boolean functions. In fact, they are more related
than one could initially guess, as we shall see next. The attempt in the
present paper (and in a few other works, see [3, 4, 5]) is to push further the
connection between two very intriguing topics, bent functions and strongly
regular graphs, with the hope that the investigation will shed more light
into the constructions of both. We would like to invite researchers in these
two areas to collaborate for the benefit of all parties.

2 Known Results

Here and throughout we assume that n ≥ 4. The following theorem is a
compilation of various results in [3] (we slightly changed the notations).

Theorem 2.1. The following statements hold:

(i) Let f : Vn → F2, and let λi, 0 ≤ i ≤ 2n − 1 be the eigenvalues of its
associated Cayley graph Gf . Then λi = W (f)(b(i)), for any i.

(ii) The multiplicity of the largest spectral coefficient of f , W (f)(b(0)),
is equal to 2n−dim〈Ωf 〉.

(iii) If Gf is connected, then f has a spectral coefficient equal to −wt(f)
if and only if its Walsh spectrum is symmetric with respect to zero.

(iv) The number of nonzero spectral coefficients is equal to rk(Af ), the
rank of Af , which satisfies 2d2 ≤ rk(Af ) ≤

∑d
i=1

(
n
i

)
(d2, respectively,

d is the degree of f over F2, respectively R).

It is known (see [12, pp. 194–195]) that a connected r-regular graph is
strongly regular iff it has exactly three distinct eigenvalues λ0 = r, λ1, λ2 (so
e = r + λ1λ2 + λ1 + λ2, d = r + λ1λ2). The following result is known [12,
Th. 3.32, p. 103].
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Proposition 2.1. The following identity holds for a strongly r-regular graph:

A2 = (d− e)A + (r − e)I + eJ,

where J is the all 1 matrix.

3 Odd cycles and bent functions

One can infer from [3], [4] and Proposition 2.1 the following result.

Theorem 3.1. Bent functions (on Vn, with n even) are the only functions
whose associated Cayley graph is a strongly regular graph with the addi-
tional property e = d. The eigenvalues of G are λ1 = |Ωf | = wt(f), λ3 =

−λ2 = −
√
|Ωf | − e, of multiplicities m1 = 1, m2 =

√
|Ωf |−e (2n−1)−|Ωf |

2
√
|Ωf |−e

,

m3 =
√
|Ωf |−e (2n−1)+|Ωf |

2
√
|Ωf |−e

. Moreover, the adjacency matrix satisfies

A2 =
(
2n−1 ± 2n/2−1 − e

)
I + eJ,

for some choice of the ± sign.

It is assumed above that Gf is connected. If it is not connected, then
the multiplicities must be multiplied by 2n−dim〈Ωf 〉 (since the connected
components of G are isomorphic).

A graph G = (V (G), E(G)) is bipartite if the vertex set V (G) can be
partitioned into two sets V1, V2 in such a way that no two vertices from the
same set are adjacent. The following result is well-known (see [1]).

Theorem 3.2. The following statements are equivalent for a graph G:

(i) G is bipartite.

(ii) G has no cycles of odd length.

(iii) Every subgraph H of G has at least |V (H)|/2 mutually non-adjacent
vertices.

(iv) The spectrum of G is symmetric with respect to 0, that is, if λ is an
eigenvalue, then −λ is also an eigenvalue.

We can prove now
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Theorem 3.3. The Cayley graph associated to a bent function is not bipar-
tite.

Proof. Theorem 3.2 implies that the graph Gf associated to a Boolean
function f is bipartite if and only if its spectrum is symmetric with re-
spect to the origin. But according to Theorem 3.1, that is impossible since
−λ1 = −wt(f) is not an eigenvalue of G. The theorem is proved.

As stated in Theorem 3.2, a graph is bipartite if and only if it contains
no cycles of odd length. Thus, if f is bent then the associated Cayley graph
contains a cycle of odd length. One can get more precise results.

Theorem 3.4. Let n > 4. If Gf is triangle-free, then f is not bent.

Proof. For a contradiction, assume that f is bent. Erdös and Sós proved in
1974 (cf. [1]), that a triangle-free graph G on p vertices with minimum degree
δ(G) > 2p/5 is bipartite. Recall that Gf is a regular graph of degree |Ωf | of
order p = 2n. Since n > 4, then 2n/2 > 5 is equivalent to 5(2n−1−2n/2−1) >

2n+1, which implies |Ωf | = wt(f) > 2n+1/5. Thus, G is bipartite. That
is certainly false by Theorem 3.3, contradicting our assumption that f is
bent.

In the previous proof it is sufficient to assume that Gf is regular of degree
greater than 2n+1/5 (if the degree is < 2n+1/5, then the function is certainly
not bent).

A more constructive argument that shows Theorem 3.4 would be the
following. Assume that f is bent. One may replace f by its complement,
also bent (cf. [14]), so we assume that the constant term a0 = 0 in equation
(1). Next, we prove that there exist triangles in Gf . By Theorem 3.1, Gf is
strongly regular. Lemma 8 of [3] shows that e = |(x⊕ Ωf ) ∩ (y ⊕ Ωf )| ≥ 1.
Applying this for x = 0 and an arbitrary vector y ∈ Ωf , implies that
e = |Ωf ∩ (y⊕Ωf )| ≥ 1. That is, there exists z ∈ Ωf such that y⊕ z ∈ Ωf .
Thus, f(y⊕z) = f(z) = f(y) = 1. It follows that 0,y, z is a triangle in Gf .

The converse of Theorem 3.4 is not true, as it can be seen by considering
on V6 the function f(x1, x2, x3, x4, x5, x6) = x1x2x3 ⊕ x2x3x4 ⊕ x3x4x5 ⊕
x4x5x6⊕x5x6x1⊕x6x1x2 and the associated Cayley graph which has plenty
of triangles, but f is not bent.

The number of triangles sitting on any two (fixed) adjacent vertices is
equal to e. We know that e = |(Ωf ⊕ vi) ∩ (Ωf ⊕ vj)| (Lemma 8 of [3])
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for any pair of vertices vi 6= vj . We note that e 6= |Ωf |, since the equality
prompts two eigenvalues to become 0. That is not possible since in that
case (see [12]) the graph Gf cannot be strongly connected. Thus e < |Ωf |.
There are other restrictions on e. A simple corollary of Theorem 3.1 is that
e must differ from |Ωf | by a perfect square.

4 Coloring the Boolean Cayley Graph

Assume that the eigenvalues of Gf are ordered as λ1 ≥ λ2 ≥ · · · ≥ λv.

Theorem 4.1. Let f be a Boolean function, and let Gf be the associated
Cayley graph with g being the multiplicity of its lowest eigenvalue λv(Gf ).

Then, min
{

g + 1, 1− λv(Gf )
λ2(Gf )

}
≤ χ(Gf ) ≤ |Ωf | (provided λ2(Gf ) 6= 0).

Proof. The first inequality min
{

g + 1, 1− λv(G)
λ2(G)

}
≤ χ(G) can be found in

[16], being true for arbitrary graphs G. Cao proved in [8] that the chromatic
number satisfies χ(G) ≤

√
T (G) + 1, for any graph G, where T (G) is the

maximum sum of degrees of vertices adjacent to any vertex v (that is, the
maximum number of 2-walks in G). When G = Gf , since Gf is Ωf -regular,
then T (Gf ) = |Ωf |2, so we get χ(Gf ) ≤ |Ωf | + 1. By Wilf’s theorem [26],
the equality χ(Gf ) = |Ωf |+1 holds if and only if Gf is a complete graph or
an odd cycle. Since Gf is neither, we obtain χ(Gf ) ≤ |Ωf |.

Corollary 4.1. With the notations of the previous theorem, assum-
ing that Gf is a strongly regular (connected) graph, with e = d, then

max
{

2, 1 + |Ωf |√
|Ωf |−e

}
≤ χ(Gf ) ≤ |Ωf |.

Proof. The corollary follows easily observing that under the imposed condi-
tions v = 3, λ3 = −λ2. Using Theorem 4.1 (with g ≥ 1), Hoffman’s famous
bound on the chromatic number χ(Gf ) ≥ 1− λ1(Gf )

λv(Gf ) (cf. [17]), and Theorem
3.1, we get the result.

One cannot get better bounds by using the fact that Gf (for f a bent
function) is always a Ramanujan graph. Recall that a graph is Ramanujan
if it is r-regular and all eigenvalues 6= r are ≤ 2

√
r − 1. That certainly

is the case here since r = |Ωf | and the eigenvalues in absolute value are√
|Ωf | − e ≤ 2

√
|Ωf | − 1. If Gf is connected and non-bipartite, r-regular
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then χ(Gf ) ≥ r
2
√

r−1
∼

√
r

2 (see [13]). However, this bound is not better
than the one obtained by Corollary 4.1.

5 Avalanche features of the Cayley graphs

In [24, 25] it was proved that a Boolean function f depends on the variable
xi linearly if and only if the Walsh transform of f̂(u) = (−1)f(u) is 0, that
is, W (f̂)(u) = 0 for all u with the ith component ui = 0. Using the known
relationship between the Walsh transform of f and f̂ ,

W (f̂)(u) = −2W (f)(u) + 2nδ(u), on Vn (3)

where δ(u) = 1 if u = 0 and 0 otherwise, it is rather easy to deduce the
following result.

Proposition 5.1. A Boolean function f depends on a variable xi linearly if
and only if the eigenvalues for the Cayley graph Gf , λ0 = 2n−1 and λj 6=0 = 0,
if b(j) has its i-th component equal to 0.

We call a function f on Vn `-order correlation-immune (` − CI) if its
Walsh transform satisfies W (f̂)(v) = 0 for all 1 ≤ wt(v) ≤ `. If, in ad-
dition, W (f̂)(0) = 0, then f is called `-resilient. We derive the following
characterization of these properties in terms of graph spectra.

Proposition 5.2. A function f on Vn is `−CI if and only if the eigenvalues
of the associated Cayley graph Gf satisfy λi = 0 for all i with 1 ≤ wt(b(i)) ≤
`. Further, f is `-resilient if and only if λi = 0 for all 1 ≤ wt(b(i)) ≤ ` and
λ0 = 2n−1.

Proof. We know that λi = W (f)(b(i)), for any 0 ≤ i ≤ 2n − 1. Using the
definition of the `−CI functions and equation (3) we derive the result.

Corollary 5.3. For an unbalanced `-CI function f , there are
∑̀
s=1

(
n

s

)
zero

eigenvalues of Gf .

One can compute the Walsh spectrum by using f = HnW (f), and
W (f) = 2−nHnf . Recall that the Sylvester-Hadamard matrix Hn is de-

fined as H1 =
(

1 1
1 −1

)
and Hn =

(
Hn−1 Hn−1

Hn−1 −Hn−1

)
, that is, Hn is the
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Kronecker product Hn = H1 ⊗ Hn−1. We show the following result (this
was also proved by McFarland, cf. [14]).

Theorem 5.1. If H = Hn is the Sylvester-Hadamard matrix with entries
(−1)vi·vj , where vi,vj are the vectors of Vn, then

HAfHt = 2nD,

where D is the diagonal matrix formed by the eigenvalues of Af .

Proof. Since HHt = 2nI2n , it suffices to show that

HAf = DH. (4)

Now, for H = (hi,j) and Af = (ai,j), the left-hand side is

(HAf )i,j =
2n∑
l=1

hi,lal,j =
2n∑
l=1

(−1)vi·vlf(vl ⊕ vj)

=
2n∑
l=1

(−1)vi·(vl⊕vj)+vi·vjf(vl ⊕ vj)

= (−1)vi·vj
∑
x∈Vn

(−1)vi·xf(x)

= (−1)vi·vjW (f)(vi) = (−1)vi·vj λi.

Let f be a Boolean function on Vn and assume that f(0) = 0. Moreover,
assume that Gf is connected. Bernasconi and Codenotti [5] proved

Theorem 5.2. The graph Gf is bipartite if and only if the Vn \Ωf contains
a subspace of dimension n− 1.

Let now S0 be a subspace of dimension n−1 of basis {α(1), α(2), . . . , α(n−1)}.
Complete the previous basis with α(n) to get a basis for Vn. Let b be the
unique solution in Vn of the system:

α
(1)
1 α

(1)
2 . . . α

(1)
n

α
(2)
1 α

(2)
2 . . . α

(2)
n

...
... . . .

...
α

(n)
1 α

(n)
2 . . . α

(n)
n




b1

b2
...

bn

 =


0
0
...
1

 (5)
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Let w ∈ Vn. Since f is 0 on S0, we have

W (f)(w ⊕ b) =
∑
x∈Vn

(−1)x·(w⊕b)f(x) =
∑

x∈Vn\S0

(−1)x·w(−1)x·bf(x).

Furthermore, since b is the solution to (5) and x 6∈ S0 is a linear combination
of the vectors α(1), . . . , α(n) (with α(n) always present), we get (−1)x·b = −1,
and the following result is proven [5].

Theorem 5.3. If b is given by (5), then W (f)(w) = −W (f)(w ⊕ b), for
any w ∈ Vn.

Further, Bernasconi and Codenotti proved the following theorem [5] that
describes the propagation features of f for all vectors with a specific prop-
erty.

Theorem 5.4. Let f : Vn → F2 be a Boolean function whose associated
graph is bipartite, and let b ∈ Vn given by (5). If |Ωf | = 2n−2, then f

satisfies the PC w.r.t all strings w such that w · b is an odd integer. If
|b| = n, then f satisfies the SAC.

The previous theorem seems to be quite restrictive. We prove a new
result next that connects the PC property with the symmetric difference in
counting vertices of Gf .

Denote by N (x) the set of vertices adjacent to a vertex x in the graph
Gf . For easy writing, we write λi = λb(i). The next result is our main
theorem of this section.

Theorem 5.5. Let f : Vn → F2 be a Boolean function. Then the following
statements are equivalent:

1. f satisfies the PC w.r.t. w;

2. |N (0) \ N (w)|+ |N (w) \ N (0)| = 2n−1;

3.
∑

u∈Vn
(−1)u·wλ2

u = 2nλ0 − 22n−2 = 2nwt(f)− 22n−2.

Proof. It is easy to see that f satisfies the PC with respect to w if and only
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if the autocorrelation function

r̂f (w) =
∑

v

(−1)f(v)+f(v⊕w)

=
∑
v∈Ωf

(−1)f(v)+f(v⊕w) +
∑
v 6∈Ωf

(−1)f(v)+f(v⊕w)

=
∑
v∈Ωf

(−1)1+f(v⊕w) +
∑
v 6∈Ωf

(−1)f(v⊕w)

=
∑

v∈Ωf∩N (w)

1 +
∑

v∈Ωf∩N (w)

(−1)

+
∑

v∈Ωf∩N (w)

(−1) +
∑

v∈Ωf∩N (w)

1 = 0.

Thus, |(N (0)∩N (w))∪(N (0)∩N (w))| = |(N (0)∩N (w))∪(N (0)∩N (w))|.
Further, using the inclusion-exclusion principle, the previous identity is
equivalent to

|N (0) ∩N (w)|+ |N (0) ∪N (w)| = |N (0) ∩N (w)|+ |N (0) ∪N (w)| ⇐⇒
|N (0) ∩N (w)|+ 2n − |N (0) ∪N (w)| = |N (0) ∩N (w)|+ 2n

− |N (0) ∪N (w)| ⇐⇒
|N (0) ∪N (w)| − |N (0) ∩N (w)| = |N (0) ∪N (w)| − |N (0) ∩N (w)| ⇐⇒
|N (0) \ N (w)|+ |N (w) \ N (0)| = 2n − |N (0) \ N (w)| − |N (w) \ N (0)|,

which proves the first claim. Now, using the Wiener-Khintchine’s Theorem
(see [9]) W (r̂)(w) = W (f̂)2(w), the equation (3) and the autocorrelation
definition one can deduce (see also [15]) that f satisfies the PC w.r.t. w if
and only if ∑

u∈Vn

(−1)u·wW (f̂)2(u) = 0 ⇐⇒

∑
u∈Vn

(−1)u·wW (f)2(u) = 2nW (f)(0, 0, . . . , 0)− 22n−2.

Since W (f)(0, 0, . . . , 0) is equal to the number of ones in the truth table of f ,
that is, the weight of f , which is the eigenvalue corresponding to (0, 0, . . . , 0),
we get the last claim.
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6 Sensitivity of Hamming Weight of f to Spec(Gf)

We know that a strongly regular Cayley graph Gf with the extra condition
e = d corresponds to a Boolean bent function f . Is there any influence of
arbitrary Cayley graph spectra on the weight (or nonlinearity) of f? We
can only prove the following theorem and its corollary in this direction.

Theorem 6.1. Let f be a Boolean function defined on Vn. If Gf is con-
nected and its spectrum Spec(Gf ) contains exactly m+1 distinct eigenvalues
(m ≤ n/2), then

n ≤ log2

(
r +

(
r

m

))
,

where r = wt(f).

Proof. We know that if |Spec(Gf )| = m + 1, then the diameter of Gf is
≤ m (cf. [12, Th. 3.13, p. 88]). Thus, for any w ∈ Vn \ Ωf , there is a
constant number of strings w(i) ∈ Ωf such that w =

∑
i w

(i). The number
of such strings is less than or equal to m, say p. It follows that writing
w =

∑r
j=1 cjw(j), cj ∈ F2, exactly p coefficients are nonzero. Thus, the

number of elements of Vn \ Ωf is less than or equal to the number of ways
of choosing p nonzero coefficients out of r. Thus, 2n − r ≤

(
r
p

)
≤

(
r
m

)
(since

m ≤ n/2). The result follows easily.

Corollary 6.1. If the Cayley graph associated to a Boolean function f is

connected and strongly regular, then wt(f) ≥ −1 +
√

2n+3 + 1
2

.

Proof. If Gf is connected and strongly regular, then the number of distinct
eigenvalues is m = 3. Therefore, the diameter of Gf , diam(Gf ) is ≤ 2.
If diam(Gf ) = 1, then Gf is complete, but then we would have only two
distinct eigenvalues. So diam(Gf ) = 2. Therefore, any w ∈ Vn \ Ωf can be
written as a sum of two elements in Ωf . Writing, as before, w =

∑r
j=1 w(j),

it follows that exactly two coefficients are nonzero. Therefore,

2n − r ≤
(

r

2

)
⇐⇒ r(r + 1) ≥ 2n+1 ⇐⇒ r ≥ −1 +

√
2n+3 + 1
2

,

thus proving the corollary.
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The author challenges the reader to find further indicators of a Boolean
function that are more sensitive to Spec(Gf ).
Acknowledgements. The author would like to thank the referee for the
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